Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Assume that after preconditioning we are given a fixed point problem x = Lx + f (*) where L is a bounded linear operator which is not assumed to be symmetric and f is a given vector. The book discusses the convergence of Krylov subspace methods for solving fixed point problems (*), and focuses on the dynamical aspects of the iteration processes. For example, there are many similarities between the evolution of a Krylov subspace process and that of linear operator semigroups, in particular in the beginning of the iteration. A lifespan of an iteration might typically start with a fast but slowing phase. Such a behavior is sublinear in nature, and is essentially independent of whether the problem is singular or not. Then, for nonsingular problems, the iteration might run with a linear speed before a possible superlinear phase. All these phases are based on different mathematical mechanisms which the book outlines. The goal is to know how to precondition effectively, both in the case of "numerical linear algebra" (where one usually thinks of first fixing a finite dimensional problem to be solved) and in function spaces where the "preconditioning" corresponds to software which approximately solves the original problem.