Das Gebiet des "Zählens von Gitterpunkten in Polytopen", auch Ehrhart-Theorie genannt, bietet verschiedene Verbindungen zu elementarer endlicher Fourier-Analysis, Erzeugendenfunktionen, dem Münzenproblem von Frobenius, Raumwinkeln, magischen Quadraten, Dedekind-Summen, algorithmischer Geometrie und mehr. Die Autoren haben mit dem Buch einen roten Faden geknüpft, der diese Verbindungen aufzeigt und so die grundlegenden und dennoch tiefgehenden Ideen aus diskreter Geometrie, Kombinatorik und Zahlentheorie anschaulich verbindet.
Mit 250 Aufgaben und offenen Problemen und vielen fesselnden Bilder, die die Beweise und Beispiele begleiten.