•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Differential Geometry of Curves and Surfaces

Shoshichi Kobayashi
Livre broché | Anglais | Springer Undergraduate Mathematics
68,95 €
+ 137 points
Format
Livraison 2 à 3 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

This book is a posthumous publication of a classic by Prof. Shoshichi Kobayashi, who taught at U.C. Berkeley for 50 years, recently translated by Eriko Shinozaki Nagumo and Makiko Sumi Tanaka.

There are five chapters: 1. Plane Curves and Space Curves; 2. Local Theory of Surfaces in Space; 3. Geometry of Surfaces; 4. Gauss-Bonnet Theorem; and 5. Minimal Surfaces.

Chapter 1 discusses local and global properties of planar curves and curves in space. Chapter 2 deals with local properties of surfaces in 3-dimensional Euclidean space. Two types of curvatures -- the Gaussian curvature K and the mean curvature H --are introduced. The method of the moving frames, a standard technique in differential geometry, is introduced in the context of a surface in 3-dimensional Euclidean space. In Chapter 3, the Riemannian metric on a surface is introduced and properties determined only by the first fundamental form are discussed. The concept of a geodesic introduced in Chapter 2 is extensively discussed, and several examples of geodesics are presented with illustrations. Chapter 4 starts with a simple and elegant proof of Stokes' theorem for a domain. Then the Gauss-Bonnet theorem, the major topic of this book, is discussed at great length. The theorem is a most beautiful and deep result in differential geometry. It yields a relation between the integral of the Gaussian curvature over a given oriented closed surface S and the topology of S in terms of its Euler number χ(S). Here again, many illustrations are provided to facilitate the reader's understanding. Chapter 5, Minimal Surfaces, requires some elementary knowledge of complex analysis. However, the author retained the introductory nature of this book and focused on detailed explanations of the examples of minimal surfaces given in Chapter 2.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
192
Langue:
Anglais
Collection :

Caractéristiques

EAN:
9789811517389
Date de parution :
25-11-19
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
156 mm x 234 mm
Poids :
299 g

Les avis