Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Der Begriff des differenzierbaren Raumes wurde von K. SPALLEK in [11] eingeführt. Es handelt sich dabei um eine Verallgemeinerung des Begriffs der differenzierbaren Mannig- faltigkeit, ähnlich wie komplexe Mannigfaltigkeiten durch komplexe Räume verall- gemeinert werden. Ferner besteht eine Verbindung zur Funktionentheorie dadurch, daß sich jeder komplexe Raum in natürlicher Weise als differenzierbarer Raum auffassen läßt. Dadurch lassen sich gewisse Ergebnisse aus der Theorie der differenzierbaren Räume auf komplexe Räume anwenden. Ein Paar D = (X, d) heißt k-differenzierbarer Unterraum des IRn, wenn Xc IRn eine Teilmenge ist und d eine Garbe über X, die dadurch entsteht, daß man die Garbe k der Keime von Ck-Funktionen im IRn auf X einschränkt und dann durch eine Idealuntergarbe ß dividiert, die folgende Eigenschaften hat: a) ßx=l=, b) ß ' -1 n = ß (für alle x EX). x x (Die Bedingung b) muß aus gewissen beweistechnischen Gründen gefordert werden und ist in vielen Fällen von selbst erfüllt.) Sind D = (X, d) und D' = (X', d') k-differenzierbarer Unterräume des IRn bzw.