Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Multiparty learning as an emerging topic, many of the related frameworks and ap-plications are proposed. In this section, we explore the extent of these frameworks and technologies. Yang et al.72 provide a comprehensive survey of existing works on a secure fed-erated learning framework. Bonawitz et al.8 build a scalable production system for Federated Learning in the domain of mobile devices. Konečn`yetal.30 propose ways to reduce communication costs in federated learning. Nishio and Yonetani44 propose a new Federated Learning protocol, FedCS, which can actively manage computing workers based on their resource conditions. Zhao et al.75 notice that conventional federated learning fails on learning non-IID data and propose a strategy to improve training on non-IID data by creating a small subset of data which is globally shared between all the edge devices. Smith et al.63 propose fed-erated multi-task learning, which is a novel systems-aware optimization method, MOCHA.