Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Feature Engineering Bookcamp EBOOK

Sinan Ozdemir
Ebook | Anglais
49,20 €
+ 49 points
Format
Disponible immédiatement
Passer une commande en un clic
Payer en toute sécurité

Description

Deliver huge improvements to your machine learning pipelines without spending hours fine-tuning parameters! This book’s practical case-studies reveal feature engineering techniques that upgrade your data wrangling—and your ML results.

In Feature Engineering Bookcamp you will learn how to:

    Identify and implement feature transformations for your data
    Build powerful machine learning pipelines with unstructured data like text and images
    Quantify and minimize bias in machine learning pipelines at the data level
    Use feature stores to build real-time feature engineering pipelines
    Enhance existing machine learning pipelines by manipulating the input data
    Use state-of-the-art deep learning models to extract hidden patterns in data

Feature Engineering Bookcamp guides you through a collection of projects that give you hands-on practice with core feature engineering techniques. You’ll work with feature engineering practices that speed up the time it takes to process data and deliver real improvements in your model’s performance. This instantly-useful book skips the abstract mathematical theory and minutely-detailed formulas; instead you’ll learn through interesting code-driven case studies, including tweet classification, COVID detection, recidivism prediction, stock price movement detection, and more.

About the technology
Get better output from machine learning pipelines by improving your training data! Use feature engineering, a machine learning technique for designing relevant input variables based on your existing data, to simplify training and enhance model performance. While fine-tuning hyperparameters or tweaking models may give you a minor performance bump, feature engineering delivers dramatic improvements by transforming your data pipeline.

About the book
Feature Engineering Bookcamp walks you through six hands-on projects where you’ll learn to upgrade your training data using feature engineering. Each chapter explores a new code-driven case study, taken from real-world industries like finance and healthcare. You’ll practice cleaning and transforming data, mitigating bias, and more. The book is full of performance-enhancing tips for all major ML subdomains—from natural language processing to time-series analysis.

What's inside

    Identify and implement feature transformations
    Build machine learning pipelines with unstructured data
    Quantify and minimize bias in ML pipelines
    Use feature stores to build real-time feature engineering pipelines
    Enhance existing pipelines by manipulating input data

About the reader
For experienced machine learning engineers familiar with Python.

About the author
Sinan Ozdemir is the founder and CTO of Shiba, a former lecturer of Data Science at Johns Hopkins University, and the author of multiple textbooks on data science and machine learning.

Table of Contents
1 Introduction to feature engineering
2 The basics of feature engineering
3 Healthcare: Diagnosing COVID-19
4 Bias and fairness: Modeling recidivism
5 Natural language processing: Classifying social media sentiment
6 Computer vision: Object recognition
7 Time series analysis: Day trading with machine learning
8 Feature stores
9 Putting it all together

 

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
272
Langue:
Anglais

Caractéristiques

EAN:
9781638351405
Date de parution :
17-10-22
Format:
Ebook
Protection digitale:
Adobe DRM
Format numérique:
ePub

Les avis