Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Discrete Element Method (DEM) is a numerical technique based on Newton's law of mechanics, initially designed to study the flow of granular materials (Cundall and Strack, 1979). The interaction between these materials and predefined environment are simulated using contact models which calculates the forces and associated energy loss (Cundall and Strack, 1979). As DEM has been refined, it has demonstrated the capability to study dynamic scenarios such as; earthquake, rock fracture and comminution (Mora et al., 1993; Potyondy et al., 1996; Morrison et al., 2007). These scenarios necessitated constructing numerical rock specimens of desired shape and size and the implementation of breakage models within DEM. A number of breakage models with variation in mathematical formulations and their mode of implementation have been utilised in comminution studies. The most prominent are the Discrete Grain Breakage (DGB) method (Potapov and Campbell, 1994), Particle Replacement Method (PRM) (Cleary, 2001) and the Bonded Particle Model (BPM) (Potyondy and Cundall, 2004). The DGB and PRM models are semi-empirical; replacing individual discrete rocks with a population of smaller rocks in accordance with a prescribed appearance function. In BPM, a rock specimen is represented by connecting/contacting discrete entities. The BPM aims to simulate rock breakage with fragmented sizes and shapes determined dynamically i.e., shapes and size distributions of fragments arise naturally.