Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Kurt Gödel (1906-1978), mathématicien, logicien et philosophe, est incontestablement l'un des plus grands esprits de notre temps. Ses réponses aux questions radicales posées par le XXe siècle au langage, aux mathématiques et à la pensée rationnelle ont modifié de façon décisive l'assise du savoir contemporain: Existe-t-il une langue qui permette d’isoler les phrases vraies dans tout monde possible? Pouvons-nous ou prouver ou réfuter chacune des phrases que nous pouvons y énoncer? Ou bien, dans une langue donnée, existe-t-il des phrases indécidables? Plus largement, existe-t-il des phrases absolument indécidables, qui, dans aucune langue plausible, ne seront ni prouvées ni réfutées? Sommes-nous des machines? Si nous pensons correctement, notre pensée doit pouvoir s’énoncer dans une langue univoque mais, en utilisant une langue définie, nous écrivons comme une machine. Existe-t-il des machines capables d’écrire tout ce que nous pouvons penser? Existe-t-il des objets qui ne sont ni dans l’espace ni dans le temps et que nous ne pouvons percevoir qu’avec nos esprits? Les nombres sont-ils de tels objets? Les mathématiques apparaissent comme le modèle de l’activité rationnelle et l’arithmétique donne le modèle de la certitude mathématique. Mais pouvons-nous donner un fondement à l’arithmétique élémentaire?
On présente ici les réponses de Gödel, en suivant son œuvre logique et philosophique, depuis sa démonstration de la complétude sémantique du calcul des prédicats (1929) à sa réflexion sur le continu chez Cantor (1947), en passant par son théorème dit d’incomplétude (1931) – théorème qui a rendu Gödel fameux au-delà de son domaine et influencé jusqu’au psychanalyste Jacques Lacan.