Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
6.1.1. Auswahl-und Anordnungsprobleme Die Aufgaben der Kombinatorik lassen sich von Auswahl- oder Anordnungs- problemen herleiten. Bei vielen praktischen und mathematischen Problemen ist die Kenntnis der Anzahl verschiedener Zusammenstellungen von ausgewählten Ele- menten einer endlichen Menge wichtig. Diese Elemente können Zahlen, Buchstaben, Personen, Gegenstände, Versuche, Ereignisse u. a. sein. Wir werden sie in der Regel mit a1' a2' ..., an bezeichnen. Dabei wird zu beachten sein, daß verschiedene Elemente auch durch verschiedene Bezeichnungen und gleiche Elemente immer durch ein und dieselbe Bezeichnung dar- gestellt werden. Zwei Zusammenstellungen sind grundsätzlich verschieden, wenn sie nicht die gleiche Anzahl von Elementen enthalten oder wenn in ihnen nicht genau die gleichen Elemente auftreten. Zum Beispiel sind die Zusammenstellungen a a2 a3 1 und a1 a3 bzw. a1 a2 a3 und a1 a2 a4 jeweils voneinander verschieden. Im folgenden sollen die sechs Grundaufgaben erläutert werden, auf die sich alle Probleme der Kombinatorik im wesentlichen zurückführen lassen. Bei einer ersten einfachen Aufgabe betrachten wir eine bestimmte Zusammen- stellung sämtlicher n Elemente der Ausgangsmenge. Darin soll jedes Element nur einmal auftreten. Eine solche Zusammenstellung wird eine Permutation genannt.