Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
With increasing advancements in information and manufacturing technologies, there is an ever‑growing need for innovative integration and application of computational design and robotic fabrication in architecture. Hybrid Intelligence in Architectural Robotic Materialization (HI-ARM) provides methods and frameworks that target this need. HI-ARM introduces methodologies and technologies that incorporate computational, fabrication and material intelligence in integrated design-to-robotic-production workflows. The intelligence is explored at multiple architectural scales (Macro, Meso, Micro) through hybridization of building processes or multi-mode robotic production and multi-materiality.
Porosity, Hybridity, and Assembly are introduced as main constituents for materialization frameworks relying on computational design and robotic production. These are tested in a series of original experiments that are presented in this thesis together with four peer-reviewed published papers discussing the process of developing integrated design-to-production methodologies in detail. The contributions show how both architectural materialization processes and building products can be customized in different phases and scales. Moreover, the developed discourse and definitions address the impacts of this research through the lenses of computation and automation in research, education, and practice in the fields of Architecture, Engineering, and Construction.