Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Implizite RUNGE-KUTTA-Formeln wurden erstmals in einer Reihe von Arbeiten ([1], [2], [3]) von J. C. BUTCHER systematisch untersucht. Hierbei wurden ver- schiedene Annahmen uber die Lage der n Stiitzstellen getroffen. Fur die behan- delten Falle wurde die Fehlerordnung angegeben und der Beweis fUr die Ein- deutigkeit des jeweiligen Verfahrens gefUhrt. Die Berechnung der Koeffizienten durch Auflosen der sie bestimmenden Gleichungssysteme wurde nur fUr n 6 durchgefiihrt. Bis n = 11 wurden sie zahlenmaf3ig in [4] mit 20 Stellen hinter dem Komma angegeben. In [5] findet sich zwar ein Beweis, dan die impliziten RUNGE-KuTTA-Formeln mit der Stutzstellenverteilung nach GAUSS eine Fehlerordnung von 2 n + 1 haben, jedoch wird hier nichts uber die praktische Verwendbarkeit dieser Formeln im allgemeinen Falle gesagt. Das im folgenden angegebene Rechenverfahren fUr die Koeffizienten wurde auf der GAMM-Tagung in Wien 1965 [6] vorgetragen. Das Verfahren umgeht die von BUTCHER angewandte Methode der numerischen Losung eines linearen Gleichungssystems von n Gleichungen mit n rechten Seiten. Die hier entwickelte formelmaf3ige Beschreibung des Verfahrens fiihrt zu einer bequemen Ermittlung der inversen Matrix des Gleichungssystems. Damit ergibt sich eine betrachtliche Ersparnis an Rechenaufwand.