•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Kernel Mean Embedding of Distributions

A Review and Beyond

Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, Bernhard Schölkopf
Livre broché | Anglais | Foundations and Trends(r) in Machine Learning | n° 31
106,45 €
+ 212 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

A Hilbert space embedding of a distribution--in short, a kernel mean embedding--has recently emerged as a powerful tool for machine learning and statistical inference. The basic idea behind this framework is to map distributions into a reproducing kernel Hilbert space (RKHS) in which the whole arsenal of kernel methods can be extended to probability measures. It can be viewed as a generalization of the original "feature map" common to support vector machines (SVMs) and other kernel methods. In addition to the classical applications of kernel methods, the kernel mean embedding has found novel applications in fields ranging from probabilistic modeling to statistical inference, causal discovery, and deep learning. Kernel Mean Embedding of Distributions: A Review and Beyond provides a comprehensive review of existing work and recent advances in this research area, and to discuss some of the most challenging issues and open problems that could potentially lead to new research directions. The targeted audience includes graduate students and researchers in machine learning and statistics who are interested in the theory and applications of kernel mean embeddings.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
154
Langue:
Anglais
Collection :
Tome:
n° 31

Caractéristiques

EAN:
9781680832884
Date de parution :
28-06-17
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
156 mm x 234 mm
Poids :
226 g

Les avis