Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Automated theorem proving represents a significant and long-standing area of research in computer science, with numerous applications. A large proport...Savoir plus
Thompson sampling is an algorithm for online decision problems where actions are taken sequentially in a manner that must balance between exploiting w...Savoir plus
Monte Carlo methods, in particular those based on Markov chains and on interacting particle systems, are by now tools that are routinely used in machi...Savoir plus
Datasets are growing not just in size but in complexity, creating a demand for rich models and quantification of uncertainty. Bayesian methods are an ...Savoir plus
Black-box machine learning models are now routinely used in high-risk settings, like medical diagnostics, which demand uncertainty quantification to a...Savoir plus
Reinforcement learning (RL) is one of the foundational pillars of artificial intelligence and machine learning. An important consideration in any opti...Savoir plus
Random matrices now play a role in many areas of theoretical, applied, and computational mathematics. It is therefore desirable to have tools for stud...Savoir plus
Random matrix theory plays a central role in statistical physics, computational mathematics and engineering sciences, including data assimilation, sig...Savoir plus
Non-convex Optimization for Machine Learning takes an in-depth look at the basics of non-convex optimization with applications to machine learning. It...Savoir plus
This book gives a broad and accessible introduction to multi-armed bandits, a rich, multi-disciplinary area of increasing importance. The material is ...Savoir plus
Adaptation, Learning, and Optimization over Networks deals with the topic of information processing over graphs. The presentation is largely self-cont...Savoir plus
Can machine learning deliver AI? Theoretical results, inspiration from the brain and cognition, as well as machine learning experiments suggest that i...Savoir plus
In contemporary science and engineering applications, the volume of available data is growing at an enormous rate. Spectral methods have emerged as a ...Savoir plus
Bayesian methods for machine learning have been widely investigated, yielding principled methods for incorporating prior information into inference al...Savoir plus
This monograph builds on Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions by discussin...Savoir plus
As data is a predominant resource in applications, Riemannian geometry is a natural framework to model and unify complex nonlinear sources of data. Ho...Savoir plus
Sequential decision making, commonly formalized as Markov Decision Process (MDP) optimization, is an important challenge in artificial intelligence. T...Savoir plus
A Hilbert space embedding of a distribution--in short, a kernel mean embedding--has recently emerged as a powerful tool for machine learning and stati...Savoir plus
The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building ...Savoir plus
Determinantal point processes (DPPs) are elegant probabilistic models of repulsion that arise in quantum physics and random matrix theory. In contrast...Savoir plus
The authors of this monograph survey recent progress in using spectral methods including matrix and tensor decomposition techniques to learn many popu...Savoir plus
Learning Representation and Control in Markov Decision Processes describes methods for automatically compressing Markov decision processes (MDPs) by l...Savoir plus
Kernel methods are among the most popular techniques in machine learning. From a regularization theory perspective, they provide a natural choice for ...Savoir plus
An Introduction to Conditional Random Fields provides a comprehensive tutorial aimed at application-oriented practitioners seeking to apply CRFs. The ...Savoir plus