•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Bayesian Reinforcement Learning

A Survey

Mohammed Ghavamzadeh, Shie Mannor, Joelle Pineau, Aviv Tamar
Livre broché | Anglais | Foundations and Trends(r) in Machine Learning | n° 27
88,45 €
+ 176 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Bayesian methods for machine learning have been widely investigated, yielding principled methods for incorporating prior information into inference algorithms. This monograph provides the reader with an in-depth review of the role of Bayesian methods for the reinforcement learning (RL) paradigm. The major incentives for incorporating Bayesian reasoning in RL are that it provides an elegant approach to action-selection (exploration/exploitation) as a function of the uncertainty in learning, and it provides a machinery to incorporate prior knowledge into the algorithms. Bayesian Reinforcement Learning: A Survey first discusses models and methods for Bayesian inference in the simple single-step Bandit model. It then reviews the extensive recent literature on Bayesian methods for model-based RL, where prior information can be expressed on the parameters of the Markov model. It also presents Bayesian methods for model-free RL, where priors are expressed over the value function or policy class. Bayesian Reinforcement Learning: A Survey is a comprehensive reference for students and researchers with an interest in Bayesian RL algorithms and their theoretical and empirical properties.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
146
Langue:
Anglais
Collection :
Tome:
n° 27

Caractéristiques

EAN:
9781680830880
Date de parution :
26-11-15
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
156 mm x 234 mm
Poids :
213 g

Les avis