•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Savoirs
  4. Informatique
  5. Sciences informatiques
  6. Mathématiques
  7. Graphical Models, Exponential Families, and Variational Inference

Graphical Models, Exponential Families, and Variational Inference

Martin J Wainwright, Michael I Jordan
Livre broché | Anglais | Foundations and Trends(r) in Machine Learning | n° 1
138,45 €
+ 276 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building large-scale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fields, including bioinformatics, communication theory, statistical physics, combinatorial optimization, signal and image processing, information retrieval and statistical machine learning. Many problems that arise in specific instances-including the key problems of computing marginals and modes of probability distributions-are best studied in the general setting. Working with exponential family representations, and exploiting the conjugate duality between the cumulant function and the entropy for exponential families, Graphical Models, Exponential Families and Variational Inference develops general variational representations of the problems of computing likelihoods, marginal probabilities and most probable configurations. It describes how a wide variety of algorithms- among them sum-product, cluster variational methods, expectation-propagation, mean field methods, and max-product-can all be understood in terms of exact or approximate forms of these variational representations. The variational approach provides a complementary alternative to Markov chain Monte Carlo as a general source of approximation methods for inference in large-scale statistical models.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
324
Langue:
Anglais
Collection :
Tome:
n° 1

Caractéristiques

EAN:
9781601981844
Date de parution :
15-12-08
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
156 mm x 234 mm
Poids :
453 g

Les avis