•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Knowledge Discovery in Multiple Databases

Shichao Zhang, Chengqi Zhang, Xindong Wu
167,95 €
+ 335 points
Format
Livraison 1 à 2 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Many organizations have an urgent need of mining their multiple databases inherently distributed in branches (distributed data). In particular, as the Web is rapidly becoming an information flood, individuals and organizations can take into account low-cost information and knowledge on the Internet when making decisions. How to efficiently identify quality knowledge from different data sources has become a significant challenge. This challenge has attracted a great many researchers including the au- thors who have developed a local pattern analysis, a new strategy for dis- covering some kinds of potentially useful patterns that cannot be mined in traditional multi-database mining techniques. Local pattern analysis deliv- ers high-performance pattern discovery from multiple databases. There has been considerable progress made on multi-database mining in such areas as hierarchical meta-learning, collective mining, database classification, and pe- culiarity discovery. While these techniques continue to be future topics of interest concerning multi-database mining, this book focuses on these inter- esting issues under the framework of local pattern analysis. The book is intended for researchers and students in data mining, dis- tributed data analysis, machine learning, and anyone else who is interested in multi-database mining. It is also appropriate for use as a text supplement for broader courses that might also involve knowledge discovery in databases and data mining.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
233
Langue:
Anglais
Collection :

Caractéristiques

EAN:
9781852337032
Date de parution :
30-08-04
Format:
Livre relié
Format numérique:
Genaaid
Dimensions :
165 mm x 239 mm
Poids :
471 g

Les avis