Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
This book studies the performance of distributed detection systems by means of large deviation techniques under two distinct models. In the first model, the error performance is investigated as the number of sensors tends to infinity by assuming that the i.i.d. sensor data are quantized locally into m-ary messages and transmitted to the fusion center for binary hypothesis testing. It is found that when the second moment of the post-quantization log-likelihood ratio is unbounded, the Neyman-Pearson error exponent becomes a function of the test level; whereas the Bayes error exponent remains unaffected. Also shown is that in Bayes testing, the equivalence of absolutely optimal and best identical-quantizer systems is not limited to error exponents but extends to the actual Bayes errors up to a multiplicative constant. In the second model, the null and alternative distributions become spatially correlated Gaussian, differing in the mean. The issue considered includes whether contiguous marginal likelihood ratio quantizers are optimal. It is shown that this is not true in general, and a sufficient condition is obtained under the case of a single observation per sensor.