Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
Retrait gratuit dans votre magasin Club
7.000.000 titres dans notre catalogue
Payer en toute sécurité
Toujours un magasin près de chez vous
Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
In der griechischen Mathematik hat man L ngen, Fl chen, Volumina durch das Ausschöpfungsprinzip des EUDOXOS von Knidos (vermutlich 408-355 v. Chr. ) bestimmt: In der Ebene ging man von der Annahme aus, daß die Fläche eines Rechteckes das Produkt seiner Seitenlän- gen ist, und erhielt durch geschicktes Teilen und Verschieben von Flächenstücken die Flächeninhalte von einfachen Figuren wie Drei- ecken, Trapezen, Parallelogrammen usw . . Sollte nun die Fläche ei- ner komplizierteren Figur K, etwa eines Kreises, bestimmt werden, so suchte man zu jeder positiven Zahl e einfache Figuren Ie und Ae mit Ie c K c Ae derart, daß der Inhalt der einfachen Figur Ae' Ie kleiner als e wurde; fand man nun eine Zahl a mit Inhalt(Ie) a Inhalt(Ae) für alle e>O, so gab man K den Flächeninhalt a. Es ist einfach zu sehen, daß dieser Begriff des Flächeninhalts additiv ist, d. h. es gilt für disjunkte K und K, für die man mittels des Ausschöpfung2 1 2 prinzipseinen Inhalt bestimmen kann, daß K u K einen Inhalt hat 1 2 und gilt. Mit der Präzisierung des Grenzwertbegriffs im 19. Jahrhundert konn- te diese Idee noch erfolgreicher benutzt werden. Bei der Definition 2 des RIEMANNschen Inhalts einer Menge Kc R verwendet man zur Appro- ximation von innen und außen endliche Vereinidungen von achsenparal - lelen Rechtecken.