Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Die beiden ersten Untersuchungen können also am vegetabilischen und geometrischen Ornament vorgenommen werden, die dritte hingegen ist nur am geometrischen Ornament möglich, da die Teilformen des vegetabilischen Ornaments nicht mathematisch konstruiert sind. Die beiden ersten Be- trachtungen können nur mit gruppentheoretischen Erwägungen sinnvoll durchgeführt werden. So müssen wenigstens die Postulate des Gruppen- begriffs bekannt sein. Auf eine eingehende Untersuchung der Gruppe muß allerdings hier verzichtet werden, da sie in das Gebiet der höheren Mathe- matik gehört. Postulate: 1. Ein System von Elementen A, B, C, D, . .. bildet eine Gruppe, wenn eine bestimmte Zusammensetzung zweier Elemente immer ein Element des Systems ergibt, oder, vielleicht klarer, wenn einem geordneten Paar von diesen Elementen immer ein Element des Systems zugeordnet ist, das man das Produkt der beiden Elemente nennt (AB = Cl. (Beispiel: A = Drehung um 900, B = Drehung um 1800, C = Drehung um 2700.) 2. Es gilt die Gleichung (AB)C = A (BC), aber nicht unbedingt AB = BA. Drücke diese Forderungen mit Worten aus. 3. Es gibt in jeder Gruppe einEinheitselement, für das gilt: A E =E A = A (s. Beispiel aus 1.: E = Drehung um 3600). 4. Es gibt zu jedem Element A ein inverses Element A-l, für das gilt AA-l = E (s. Beispiel aus 1.: A-l = Cl. Definitionen: 1. Die Anzahl der Elemente einer endlichen Gruppe nennt man die Ordnung der Gruppe.