•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Mastering PyTorch

Build powerful neural network architectures using advanced PyTorch 1.x features

Ashish Ranjan Jha
Livre broché | Anglais
50,45 €
+ 100 points
Livraison 1 à 2 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Master advanced techniques and algorithms for deep learning with PyTorch using real-world examples

Key Features

- Understand how to use PyTorch 1.x to build advanced neural network models

- Learn to perform a wide range of tasks by implementing deep learning algorithms and techniques

- Gain expertise in domains such as computer vision, NLP, Deep RL, Explainable AI, and much more

Book Description

Deep learning is driving the AI revolution, and PyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch book will help you uncover expert techniques to get the most out of your data and build complex neural network models.

The book starts with a quick overview of PyTorch and explores using convolutional neural network (CNN) architectures for image classification. You'll then work with recurrent neural network (RNN) architectures and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation using generative models and explore the world of generative adversarial networks (GANs). You'll not only build and train your own deep reinforcement learning models in PyTorch but also deploy PyTorch models to production using expert tips and techniques. Finally, you'll get to grips with training large models efficiently in a distributed manner, searching neural architectures effectively with AutoML, and rapidly prototyping models using PyTorch and fast.ai.

By the end of this PyTorch book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.

What you will learn

- Implement text and music generating models using PyTorch

- Build a deep Q-network (DQN) model in PyTorch

- Export universal PyTorch models using Open Neural Network Exchange (ONNX)

- Become well-versed with rapid prototyping using PyTorch with fast.ai

- Perform neural architecture search effectively using AutoML

- Easily interpret machine learning (ML) models written in PyTorch using Captum

- Design ResNets, LSTMs, Transformers, and more using PyTorch

- Find out how to use PyTorch for distributed training using the torch.distributed API

Who this book is for

This book is for data scientists, machine learning researchers, and deep learning practitioners looking to implement advanced deep learning paradigms using PyTorch 1.x. Working knowledge of deep learning with Python programming is required.

Table of Contents

- Overview of Deep Learning Using PyTorch

- Combining CNNs and LSTMs

- Deep CNN Architectures

- Deep Recurrent Model Architectures

- Hybrid Advanced Models

- Music and Text Generation with PyTorch

- Neural Style Transfer

- Deep Convolutional GANs

- Deep Reinforcement Learning

- Operationalizing Pytorch Models into Production

- Distributed Training

- PyTorch and AutoML

- PyTorch and Explainable AI

- Rapid Prototyping with PyTorch

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
450
Langue:
Anglais

Caractéristiques

EAN:
9781789614381
Date de parution :
12-02-21
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
190 mm x 235 mm
Poids :
766 g

Les avis