Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
This thesis deals with the mathematical modeling, the inline measurement of quality parameters, and the optimization of the process and machine design of rolling-cut trimming shears for heavy steel plates. Side and longitudinal trimming of heavy plates constitute one of the last process steps in the finishing part of rolling mills. Thus, the product quality with respect to its geometrical shape is mainly determined by this process step. Traditionally, a mechanical rolling-cut shearing technique is utilized to conduct the plate trimming due to its high process speed. However, this technique frequently provokes quality defects on the plate geometry, in particular on the trimmed edges. These defects often bring along the necessity of costly post-processing of the steel plates.The first part of this thesis is dedicated to gain a physical understanding of the rolling-cut shearing process. For this purpose, a suitable mathematical 3D model of the trimming shear is developed and validated by plant measurements. The gained insights are utilized in the second part to optimize the geometrical design of common rolling-cut trimming shears. The third part presents an automated inline quality inspection system for trimmed steel plates. This novel system consists of a charge-coupled device camera and 2D laser sensors, which allow for a complete and accurate estimation of the product quality without interfering the production process. The final part of this thesis is concerned with the optimization of process parameters for rolling-cut trimming shears. The goal of this optimization is to achieve a high and consistent product quality. A data set generated by the proposed quality inspection system serves as a basis for machine learning applications.