Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
Retrait gratuit dans votre magasin Club
7.000.000 titres dans notre catalogue
Payer en toute sécurité
Toujours un magasin près de chez vous
Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Das Ziel der hier vorliegenden Abhandlung ist eine einfache einheitliche Darstellung der Konvergenzbeweise fUr numerische Verfahren nichtlinea- rer Optimierungsaufgaben und der damit verbundenen nichtlinearen Gleichungen. 1m wesentlichen werden Verfahren betrachtet, die auf der Idee des Gradienten- und Newton-Verfahrens beruhen. Es wurde dabei nach moglichst einfachen Beweisen fUr die Konvergenz und die Konver- genzgeschwindigkeit von Algorithmen fUr Aufgaben in dem Euklidischen n Raum IR gesucht. Es hat sich aber herausgestellt, daB gerade die einfa- n chen Beweise nicht die spezielle Struktur des IR benutzen und in allge- meinen normierten Raumen gUltig sind. Das zentrale Beweismittel ist hier der Mittelwertsatz der Differentialrechnung in der Integralform, der auch in Banachraumen gilt. Wir setzen den Begriff eines Vektorraumes ( linearen Raumes ) als bekannt voraus und wollen mit der Definition eines normierten Raumes die EinfUhrung beginnen. Die Auswahl der Eigenschaften eines normierten Raumes wird sich an der Tatsache orien- n tieren, daB die Numerik in IR im Vordergrund stehen soll. linter einem Vektorraum wird im gesamten Text ein Vektorraum Uber dem Korper der reellen Zahlen verstanden. Es wird empfohlen sofort mit dem eigentlichen Text (ab Kapitel 1) anzufangen und die EinfUhrung nur als Nachschlage- werk zu benutzen. Denn die EinfUhrung ist an einigen Stellen als Ergan- zung gedacht. So werden z. B. im Abschnitt 0. 8. 6 uniform konvexe Funk- n tionen eingefUhrt, die auch fUr die Numerik in IR wichtig sind.