Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Elucidating the structures of biopolymers as they exist in nature has long been a goal of biochemists and biologists. Understanding how these substances interact with themselves, other solutes, and solvents can provide useful insights into many areas of biochemistry, agriculture, food science and medicine. Knowledge of the structure of a protein or complex carbohydrate in its native form provides guidelines for the chemical or genetic modifications often desired to optimize these compounds to specific needs and applications. For example, in the pharmaceutical industry, structure-function relationships involving biopolymers are studied rou- tinely as a means to design new drugs and improve their efficacies. The tools to conduct structure investigations of biopolymers at the molecular level are limited in number. Historically X-ray crystallography has been the most attractive method to conduct studies of this type. How- ever, X-ray methods can only be applied to highly ordered, crystalline materials, thus obviating studies of solution dynamics that are often critical to attaining a global understanding of biopolymer behavior. In recent years, nuclear magnetic resonance (NMR) spectroscopy has evolved to become a powerful tool to probe the structures of biopolymers in solution and in the solid state. NMR provides a means to study the dynamics of polymers in solution, and to examine the effects of solute, solvent and' other factors n polymer behavior. With the development of 2D and 3D forms of NMR spectroscopy, it is now possible to assess the solution conforma- tions of small proteins, oligonucleotides and oligosaccharides.