Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
The term Structure from Motion (SfM) was coined by the computer vision community to define the problem of estimating the three-dimensional structure of the scene and the motion from two-dimensional image sequences. This monograph considers the same estimation problem but where the sensor suit is also composed of inertial sensors (accelerometers and gyroscopes). This problem is referred to as the Visual-Inertial Structure from Motion (VI-SfM). The VI-SfM problem has generated particular interest and has been investigated by both computer science and neuroscience. These sensors require no external infrastructure which is a key advantage for robots operating in unknown environments where GPS signals are shadowed. For this reason, vision and inertial sensing have received great attention from within the mobile robotics community in recent years and many approaches have been introduced. Observability Properties and Deterministic Algorithms in Visual-Inertial Structure from Motion provides the reader with the state of the art in VI-SfM and also adds a series of new results. In particular, these new results significantly improve the current state of the art by providing new properties related to three fundamental issues: observability properties, resolvability in closed-form and data association. These results are important from a technological point of view. Additionally, they can provide a new insight for the comprehension of the process of vestibular and visual integration, which has been investigated in the framework of neuroscience.