Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Opinion mining, which uses computational methods to extract opinions and sentiments from natural language texts, can be applied to various software engineering (SE) tasks. For example, developers can mine user feedback from mobile app reviews to understand how to improve their products, and software team leaders can assess developers' mood and emotions by mining communication logs or commit messages. Also, the growing popularity of technical Q&A websites (e.g., Stack Overflow) and code-sharing platforms (e.g., GitHub) made available a plethora of information that can be mined to collect opinions of experienced developers (e.g., what they think about a specific software library). The latter can be used to assist software design decisions. However, such a task is far from trivial due to three main reasons: First, the amount of information available online is huge; second, opinions are often embedded in unstructured data; and third, recent studies have indicated that opinion mining tools provide unreliable results when used out-of-the-box in the SE domain, since they are not designed to process SE datasets. Despite all these challenges, we believe mining opinions from online resources enables developers to access peers' expertise with ease. The knowledge embedded in these opinions, once converted into actionable items, can facilitate software development activities. We first investigated the feasibility of using state-of-the-art sentiment analysis tools to identify sentiment polarity in the software context. We also examined whether customizing a neural network model with SE data can improve its performance of sentiment polarity prediction. Based on the findings of these studies, we proposed a novel approach for recommending APIs with rationales by mining opinions from Q&A websites to support software design decisions. On the one hand, we shed light on the limitations researchers face when applying existing opinion mining techniques in SE context. On the other hand, we illustrate the promise of mining opinions from online resources to support software development activities.