Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
En raison d'une grêve chez bpost, votre commande pourrait être retardée. Vous avez besoin d’un livre rapidement ? Nos magasins vous accueillent à bras ouverts !
Retrait gratuit dans votre magasin Club
7.000.000 titres dans notre catalogue
Payer en toute sécurité
Toujours un magasin près de chez vous
En raison de la grêve chez bpost, votre commande pourrait être retardée. Vous avez besoin d’un livre rapidement ? Nos magasins vous accueillent à bras ouverts !
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Mikrofluidiken gelangen vermehrt in die alltäglichen Anwendungen der medizinischen Diagnostik. Die hierzu zählenden mikrofluidischen fluoreszenz-aktivierten Zellsortierer (µFACS, engl. fluorescence activated cell sorter) durchmustern und sortieren Zellen in Suspension auf Einzelzellbasis. Anwendung finden diese z.B. in der klinischen Diagnostik, der Lebensmittelüberwachung und der biotechnologischen Forschung. Für eine breite Anwendung von µFACS fehlen bisher kompakte, robuste und kostengünstige Systeme. Der in dieser Arbeit untersuchte opto-kalorische Schalter kann durch den monolithisch aufgebauten Chip und die optischen Schnittstellen hierzu einen Beitrag leisten. Das Wirkprinzip basiert auf der lokalen optischen Erwärmung des Fluids und der damit verbundenen Expansion und Viskositätsänderung. Durch die Gestaltung des mikrofluidischen Kanalsystems und insbesondere des geheizten Kanalabschnitts bewirken diese Änderungen lokal eine Volumenstromerhöhung, welche flussabwärts an einer Y-Verzweigung den zu schaltenden Analytstrom von einem Ausgang zum anderen verschiebt.In dieser Arbeit wird das auf diese Weise erzielte Schalten mit den in Wissenschaft und Technik etablierten Verfahren untersucht und verglichen. Eine Systematik wird erarbeitet, um den Schaltvorgang zu beschreiben und Zusammenhänge zwischen Widerstandsänderungen, den das System beschreibenden Teilvolumenströmen und der Schaltamplitude herzustellen. Zwei Wirkmechanismen, die thermische Expansion und die gesteuerte Viskosität, werden analysiert und auf ihre zeitlichen Eigenschaften beim Schaltvorgang hin untersucht.Für die experimentelle Untersuchung des Schalters werden Methoden entwickelt, welche das Schalten und das Sortieren getrennt charakterisieren. Der Schaltvorgang wird durch die maximale Schaltamplitude und die Schaltzeiten beschrieben und in zwei Arbeitsbereiche, den laminaren und den turbulenten Schaltverlauf, eingeteilt. Der Sortierprozess wird auf Einzelereignisbasis untersucht und mit statistischen Methoden werden die Sortierrichtigkeit und Sortiersicherheit ermittelt. Für das Sortieren von Partikeln werden für Einstrahlzeiten der heizenden Laserstrahlung von 7 - 15 ms Sortiersicherheiten von größer 0,9 erreicht. Es wird abgeleitet, dass für ein optimiertes mikrofluidisches Kanalsystem sich dieser Bereich der Einstrahlzeiten auf 5 - 20 ms vergrößert und Sortierfrequenzen von bis zu 100 Hz möglich sind.