Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Diese Arbeit präsentiert einen Ansatz zur datengetriebenen Bewegungsgenerierung für humanoide Roboter, der auf der Beobachtung und Analyse menschlicher Ganzkörperbewegungen beruht. Hierzu wird untersucht, wie erfasste Bewegungen repräsentiert, klassifiziert und in einer großskaligen Bewegungsdatenbank organisiert werden können. Die statistische Modellierung der Transitionen zwischen charakteristischen Ganzkörperposen ermöglicht im Anschluss die Generierung von Multi-Kontakt-Bewegungen. This work presents an approach to data-driven motion generation for humanoid robots, which is based on the observation and analysis of human whole-body motions. To this end, we investigate how captured human motions can be represented, classified and organized in a large-scale motion database. The statistical modeling of the transitions between characteristic whole-body poses enables the subsequent generation of multi-contact motions.