Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Obtén el manual definitivo para manipular, procesar, limpiar y restringir conjuntos de datos en Python. Actualizado para Python 3.10 y pandas 1.4.0, esta tercera edición de Python para análisis de datos. Manipulación de datos con pandas, NyumPy y Jupyter está llena de casos prácticos, que permiten averiguar cómo resolver una amplia variedad de problemas de datos de una manera efectiva. Con su ayuda conocerás y aprenderás las versiones más recientes de pandas, NumPy, IPython y Jupyter.Escrito por Wes McKinney, el creador del proyecto pandas, Python para análisis de datos es una introducción práctica y moderna a las herramientas de ciencia de datos que ofrece Python. Es ideal para analistas no versados en Python y para programadores que deseen ponerse al día en ciencia de datos y computación científica o ciencia computacional. GitHub alberga los archivos de datos empleados en el libro y otro material asociado. Entre otras cosas, este libro permite: * Utilizar Jupyter Notebook y el shell de IPython para explorar datos. * Aprender funciones de NumPy básicas y avanzadas. * Iniciarse en el manejo de las herramientas de análisis de datos de la librería pandas. * Emplear herramientas flexibles para limpiar, transformar, combinar y remodelar datos. * Crear visualizaciones informativas con matplotlib. * Aplicar la función GroupBy de pandas para segmentar, desmenuzar y resumir conjuntos de datos. * Analizar y manipular series de datos temporales regulares e irregulares. * Aprender cómo resolver problemas reales de análisis de datos con ejemplos específicos y detallados.