•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Scaling Python with Dask

From Data Science to Machine Learning

Holden Karau, Mika Kimmins
Livre broché | Anglais
110,95 €
+ 221 points
Livraison 2 à 3 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Modern systems contain multi-core CPUs and GPUs that have the potential for parallel computing. But many scientific Python tools were not designed to leverage this parallelism. With this short but thorough resource, data scientists and Python programmers will learn how the Dask open source library for parallel computing provides APIs that make it easy to parallelize PyData libraries including NumPy, pandas, and scikit-learn.

Authors Holden Karau and Mika Kimmins show you how to use Dask computations in local systems and then scale to the cloud for heavier workloads. This practical book explains why Dask is popular among industry experts and academics and is used by organizations that include Walmart, Capital One, Harvard Medical School, and NASA.

With this book, you'll learn:

  • What Dask is, where you can use it, and how it compares with other tools
  • How to use Dask for batch data parallel processing
  • Key distributed system concepts for working with Dask
  • Methods for using Dask with higher-level APIs and building blocks
  • How to work with integrated libraries such as scikit-learn, pandas, and PyTorch
  • How to use Dask with GPUs

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
223
Langue:
Anglais

Caractéristiques

EAN:
9781098119874
Date de parution :
22-08-23
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
178 mm x 233 mm
Poids :
367 g

Les avis