•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Statistical Models for Pattern Analysis

Linear Models for Dimensionality Reduction and Statistical Pattern Recognition

Alok Sharma
Livre broché | Anglais
77,95 €
+ 155 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

In this book a number of novel algorithms for dimension reduction and statistical pattern recognition for both supervised and unsupervised learning tasks have been presented. Several existing pattern classifiers and dimension reduction algorithms are studied. Their limitations and/or weaknesses are considered and accordingly improved techniques are given which overcome several of their shortcomings. Highlights are: i) Survey of basic dimensional reduction tools viz. principal component analysis and linear discriminant analysis are conducted. ii) Development of Fast PCA technique which finds the desired number of leading eigenvectors with much less computational cost. iii) Development of gradient LDA technique for SSS problem. iv) The rotational LDA technique is developed to reduce the overlapping of samples between the classes. v) A combined classifier using MDC, class-dependent PCA and LDA is presented. vi) The splitting technique initialization is introduced in the local PCA technique. vii) A new perspective of subspace ICA (generalized ICA, where all the components need not be independent) is introduced by developing vector kurtosis (an extension of kurtosis) function.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
220
Langue:
Anglais

Caractéristiques

EAN:
9783846533314
Date de parution :
01-05-12
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
152 mm x 229 mm
Poids :
326 g

Les avis