Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
The common experience in solving control problems shows that optimal control as a function of time proves to be piecewise analytic, having a finite number of jumps (called switches) on any finite-time interval. Meanwhile there exists an old example proposed by A.T. Fuller [1961) in which optimal control has an infinite number of switches on a finite-time interval. This phenomenon is called chattering. It has become increasingly clear that chattering is widespread. This book is devoted to its exploration. Chattering obstructs the direct use of Pontryagin's maximum principle because of the lack of a nonzero-length interval with a continuous control function. That is why the common experience appears misleading. It is the hidden symmetry of Fuller's problem that allows the explicit solution. Namely, there exists a one-parameter group which respects the optimal trajectories of the problem. When published in 1961, Fuller's example incited curiosity, but it was considered only "interesting" and soon was forgotten. The second wave of attention to chattering was raised about 12 years later when several other examples with optimal chattering trajectories were 1 found. All these examples were two-dimensional with the one-parameter group of symmetries.