•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Transactions on Rough Sets II

Rough Sets and Fuzzy Sets

Livre broché | Anglais | Lecture Notes in Computer Science | Transactions on Rough Sets | n° 3135
52,95 €
+ 105 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

This collection of articles is devoted to fuzzy as well as rough set theories. Both theoriesarebasedonrigorousideas, methodsandtechniquesinlogic, mathem- ics, and computer science for treating problems for which approximate solutions are possible only, due to their inherent ambiguity, vagueness, incompleteness, etc. Vast areas of decision making, data mining, knowledge discovery in data, approximatereasoning, etc., aresuccessfully exploredusing methods workedout within fuzzy and rough paradigms. By the very nature of fuzzy and rough paradigms, outlined above, they are related to distinct logical schemes: it is well-known that rough sets are related to modal logicsS5andS4(Orl owska, E., Modal logics in the theory of infor- tion systems, Z. Math. Logik Grund. Math. 30, 1984, pp. 213 ?.; Vakarelov, D., Modal logics for knowledgerepresentationsystems, LNCS 363,1989, pp. 257?.) and to ?nitely-valued logics (Pagliani, P., Rough set theory and logic-algebraic structures. In Incomplete Information: Rough Set Analysis, Orlo wska, E., ed., Physica/Springer, 1998, pp. 109 ?.; Polkowski, L. A note on 3-valued rough logic accepting decision rules, Fundamenta Informaticae 61, to appear). Fuzzy sets are related to in?nitely-valued logics (fuzzy membership to degree r? [0,1]expressingtruthdegreer)(Goguen, J.A., Thelogicofinexactconcepts, Synthese18/19,1968-9, pp.325?.;Pavelka, J., OnfuzzylogicI, II, III, Z. Math. Logik Grund. Math. 25, 1979, pp. 45 ?., pp. 119 ?., pp. 454 ?.; Dubois, D., Prade, H., Possibility Theory, Plenum Press, 1988; Haj ´ ek, P., Metamathematics of Fuzzy Logic, Kluwer, 1998).

Spécifications

Parties prenantes

Editeur:

Contenu

Nombre de pages :
363
Langue:
Anglais
Collection :
Tome:
n° 3135

Caractéristiques

EAN:
9783540239901
Date de parution :
03-12-04
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
156 mm x 234 mm
Poids :
530 g

Les avis