Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Trends in Cleaning Relational Data

Consistency and Deduplication

Ihab F Ilyas, Xu Chu
Livre broché | Anglais | Foundations and Trends(r) in Databases | n° 19
76,95 €
+ 153 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Data quality is one of the most important problems in data management, since dirty data often leads to inaccurate data analytics results and wrong business decisions. According to a report by InsightSquared in 2012, poor data across businesses and the government cost the United States economy 3.1 trillion dollars a year. To detect data errors, data quality rules or integrity constraints (ICs) have been proposed as a declarative way to describe legal or correct data instances. Any subset of data that does not conform to the defined rules is considered erroneous, which is also referred to as a violation. Various kinds of data repairing techniques with different objectives have been introduced where algorithms are used to detect subsets of the data that violate the declared integrity constraints, and even to suggest updates to the database such that the new database instance conforms with these constraints. While some of these algorithms aim to minimally change the database, others involve human experts or knowledge bases to verify the repairs suggested by the automatic repeating algorithms. Trends in Cleaning Relational Data: Consistency and Deduplication discusses the main facets and directions in designing error detection and repairing techniques. It proposes a taxonomy of current anomaly detection techniques, including error types, the automation of the detection process, and error propagation. It also sets out a taxonomy of current data repairing techniques, including the repair target, the automation of the repair process, and the update model. It concludes by highlighting current trends in "big data" cleaning.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
128
Langue:
Anglais
Collection :
Tome:
n° 19

Caractéristiques

EAN:
9781680830224
Date de parution :
30-10-15
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
156 mm x 234 mm
Poids :
190 g

Les avis