Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Die a1gebraische Zahlentheorie hat sich aus den ersten Ansatzen bei G a 11 Il unter den Hinden der groBen Meister des vergangenen und dieses Jahrhunderts zu einem gewaltigen Lehrgebaude entwickelt, das heute iiberreich an allgemeinen Satzen, beherrsohenden methodischen Gesichtspunkten und tiefen strukturellen Einsichten im wesentlichen abgeschlossen dasteht. Die erste Phase dieser Ent- wicklung hat Hilbert [2] in seinem beriihmten Bericht iiber die Theorie der alge- bra. ischen Zahlkorperl) zusammenfassend dargestellt. Dieser Bericht bringt in seinen . ersten beiden Teilen die allgemeinen Grundlagen der Theorie und geht dann in weiteren drei Teilen auf drei spezielle Typen algebraischer Zahlkorper des naheren ein, namlich auf die quadratischen Zahlkorper, die Kreiskorper und die Kummerschen Zahlkorper. Vom heutigen Standpunkt aUi! gesehen fiihren diese letzten drei Teile des Hilbertschen Zahlberichts Spezialfalle del- allgemeinen Theorie der relativ-abelschen Zahlkorper durcb. Sie leiten die zweite Phase der Entwicklung ein, zu der Hilbert selbst mit seiner kiihnen Konzeption des KlassenkorperbegrifJs und der Hauptsatze der Klassenkorpertheorie den Anstoll gab. Diese zweite Phase, die Theorie der relativ-abelschen Zahlkorper, in der die Klassenkorpertheorie in voller Allgemeinheit entwickelt und auf die Herleitung des allgemeinsten Reziprozitatsgesetzes angewandt wird, habe ich [1] im AnschluB an l Hilberts Zablbericbt in einem dreiteiligen Bericht ) zusammenfassend dargestellt. Bei dieser ganzen Entwicklung, die von allgemeinen theoretischen, struktu- rellen, methodischen und systematischen Gesichtspunkten geleitet wurde, ist nun aber das jedem echten Zahlentheoretiker eigene Bediirfnis nach expliziter Be- heuschung des behandelten Gegenstandes bis zur Durchfiibrung numerischer Bei- spiele stark in den Hintergrund getreten.