Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Classification and clustering of time series is becoming an important area of research in several fields, such as economics, marketing, business, finance, medicine, biology, physics, psychology, zoology, and many others. For example, in economics we may be interested in classifying the economic situation of a country by looking at some time series indicators, such as Gross National Product, disposable income, unemployment rate or inflation rate. In this book, we propose new measures of distance between time series based on the autocorrelations, partial and inverse autocorrelations, and periodogram ordinates. The use of both hierarchical and nonhierarchical clustering algorithms is considered. We also introduce time and frequency domain based metrics for classification of time series with unequal lengths. As economic applications, we present two illustrative examples. The first uses economic time series data to identify similarities among industrial production series in the United States. The second applies the interpolated periodogram based method for classifying time series with unequal lengths of industrialized countries.