Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Developed by Jean-Paul Benzérci more than 30 years ago, correspondence analysis as a framework for analyzing data quickly found widespread popularity in Europe. The topicality and importance of correspondence analysis continue, and with the tremendous computing power now available and new fields of application emerging, its significance is greater than ever. Correspondence Analysis and Data Coding with Java and R clearly demonstrates why this technique remains important and in the eyes of many, unsurpassed as an analysis framework. After presenting some historical background, the author presents a theoretical overview of the mathematics and underlying algorithms of correspondence analysis and hierarchical clustering. The focus then shifts to data coding, with a survey of the widely varied possibilities correspondence analysis offers and introduction of the Java software for correspondence analysis, clustering, and interpretation tools. A chapter of case studies follows, wherein the author explores applications to areas such as shape analysis and time-evolving data. The final chapter reviews the wealth of studies on textual content as well as textual form, carried out by Benzécri and his research lab. These discussions show the importance of correspondence analysis to artificial intelligence as well as to stylometry and other fields. This book not only shows why correspondence analysis is important, but with a clear presentation replete with advice and guidance, also shows how to put this technique into practice. Downloadable software and data sets allow quick, hands-on exploration of innovative correspondence analysis applications.