Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Savoirs
  4. Informatique
  5. Réseaux
  6. DDoS Attack Detection Using Machine Learning Techniques in SDN

DDoS Attack Detection Using Machine Learning Techniques in SDN

Sonali Patro Polaki, Kshira Sagar Sahoo, Bibhudatta Sahoo
Livre broché | Anglais
39,45 €
+ 78 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Software Defined Networks (SDN) paradigm was introduced to overcome the limitations of the traditional network. It becomes a promising network architecture that provide network operators more control over the network infrastructure. The controller also called as the operating system of the SDN which has the centralized control over the network. Despite all its capabilities, introduction of various architectural entities of SDN poses many security threats. Among many such security threats, Distributed Denial of Services (DDoS) is a rapidly growing attack. This targets the availability of the network, by flooding the controller with spoofed packets. Therefore, it is important to design a robust attack detection mechanism to prevent the control plane DDoS attack. In this work, we have used Machine Learning techniques such as Naive Bayes, Random Forest, Multilayer Perceptron and Support Vector Machines to classify and predict DDoS attacks like ICMP-Echo, Smurf, TCP SYN, and HTTP flood on a self generated dataset. Experimental results with proper analysis have been presented in this work.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
64
Langue:
Anglais

Caractéristiques

EAN:
9783659956706
Format:
Livre broché
Dimensions :
150 mm x 220 mm

Les avis