•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Sciences humaines
  4. Sciences
  5. Mathématiques
  6. Optimisation
  7. Decision and Inhibitory Trees and Rules for Decision Tables with Many-Valued Decisions

Decision and Inhibitory Trees and Rules for Decision Tables with Many-Valued Decisions

Fawaz Alsolami, Mohammad Azad, Igor Chikalov, Mikhail Moshkov
Livre broché | Anglais | Intelligent Systems Reference Library | n° 156
105,45 €
+ 210 points
Format
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

The results presented here (including the assessment of a new tool - inhibitory trees) offer valuable tools for researchers in the areas of data mining, knowledge discovery, and machine learning, especially those whose work involves decision tables with many-valued decisions. The authors consider various examples of problems and corresponding decision tables with many-valued decisions, discuss the difference between decision and inhibitory trees and rules, and develop tools for their analysis and design. Applications include the study of totally optimal (optimal in relation to a number of criteria simultaneously) decision and inhibitory trees and rules; the comparison of greedy heuristics for tree and rule construction as single-criterion and bi-criteria optimization algorithms; and the development of a restricted multi-pruning approach used in classification and knowledge representation.


Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
276
Langue:
Anglais
Collection :
Tome:
n° 156

Caractéristiques

EAN:
9783030128562
Date de parution :
27-11-20
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
156 mm x 234 mm
Poids :
417 g

Les avis