Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
Retrait gratuit dans votre magasin Club
7.000.000 titres dans notre catalogue
Payer en toute sécurité
Toujours un magasin près de chez vous
Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Zum Kontext dieses Buches Die numerische Behandlung partieller Differentialgleichungen beinhaltet im allgemeinen die Lösung großer bis sehr großer Gleichungssysteme. Bei dreidimensionalen Problemen z. B. sind mehrere Millionen Unbekannte keine Seltenheit, und obwohl die Rechenleistung der stärksten Computer in den letzten Jahrzehnten exponentiell angestiegen ist, könnten viele praxis- relevante Probleme heute nicht gelöst werden, wären die Numeriker nicht bei der Entwicklung effizienter Algorithmen ähnlich erfolgreich gewesen. Zu den bemerkenswertesten Fortschritten auf diesem Gebiet zählt die Entwicklung adaptiver Mehrgitter-und Multilevelverfahren, deren Erfolg auf der Verschmelzung zweier leistungsfähiger Konzepte beruht: der Kombination adaptiver Diskretisierungstechniken mit schnellen Mehrgitter- bzw. Multilevellösern. Die Anwendung adaptiver Diskretisierungstechniken dient zunächst dazu, die Anzahl der Unbekannten und damit die Dimension des zu lösenden Gleichungssystems möglichst gering zu halten. Wurden früher zur Diskretisierung partieller Differentialgleichungen in erster Linie gleichmäßig strukturierte Rechteckgitter verwendet, so ist man heute durch den Einsatz ge- eigneter Fehlerschätzer in der Lage, die Diskretisierung - ausgehend von einem relativ groben Anfangsgitter und einer entsprechend groben Näherungslösung - schrittweise an die aktuel- le Näherungslösung anzupassen, bis die gewünschte Genauigkeit erreicht ist. Üblicherweise wird dazu das aktuelle Diskretisierungsgitter lokal verfeinert, und zwar an solchen Stellen, wo aufgrund entsprechender Fehlerabschätzungen eine höhere Genauigkeit zu erwarten ist, z. B. in der Nähe von Singularitäten, Grenzschichten, einspringenden Ecken, etc. Bereiche, in denen die Lösung sichals hinreichend glatt herausstellt, bleiben unverfeinert oder könne- etwa bei zeit abhängigen Anwendungen - sogar wieder vergröbert werden.