Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Die Produktivität bei der Herstellung von Struktur- und Triebwerksbauteilen aus Titanwerkstoffen stellt eine Kernherausforderung der Luftfahrtindustrie zur Steigerung der Ressourceneffizienz dar. Dies ist der kombinierten wirtschaftlichen Betrachtung eines Flugzeugs in Produktion und Betrieb geschuldet. Eine Reduktion der Flugzeugmasse und die damit verbundene Steigerung der Ressourceneffizienz im Betrieb steht in Konkurrenz zu den Kosten der Gewichtsreduktion in der Produktion. Durch eine gesteigerte Produktivität wird dieser Konflikt gelöst.Ein Ansatz zur Steigerung der Produktivität der spanenden Formgebung ist die Warmzerspanung. Bei dieser Prozessstrategie wird das Werkstückmaterial in der Zerspanzone erwärmt, um das am Werkzeug wirkende thermomechanische Belastungskollektiv hinsichtlich der Werkzeugstandzeit positiv zu beeinflussen. Für den industriellen Einsatz ist jedoch ein gesteigertes Prozessverständnis notwendig.Diese Arbeit fokussiert daher die Prozessbefähigung der induktiv unterstützten Warmzerspanung für den Einsatz bei der Fräsbearbeitung von TiAl6V4. Basierend auf einer Prozesssimulation erfolgt die Analyse der Ursache-Wirk-Mechanismen sowie eine Prozessauslegung. Experimentelle Untersuchungen zeigen einen Standzeitvorteile des Warmzerspanungsprozesses gegenüber dem Einsatz konventionellem Kühlschmierstoffs (KSS) von über 200 %, welcher in den Verschleißmechanismen begründet liegt. Während sich unter Einsatz von KSS in der Schneide vorrangig Querrisse bilden, welche in frühzeitigen Schneidkantenausbrüchen resultieren, treten bei der Warmzerspanung vorrangig Kammrisse auf. Die Kammrissbildung der Warmzerspanung ist auf die herabgesetzte Streckgrenze des Schneidstoffs und der damit auftretenden partiellen plastischen Verformung zurückzuführen.