Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Marketing and performance data often include measures repeated over time. Time-series models are uniquely suited to capture the time dependence of both a criterion variable and predictor variables, and how they relate to each other over time. The objective of this monograph is to give you a foundation in these models and to enable you to apply them to your own research domain of interest. To this end, the author discusses both the underlying perspectives and differences between alternative models, and the practical issues with testing, model choice, model estimation and interpretation common in empirical research. This combination of marketing phenomena and modeling philosophy sets this work apart from previous treatments on the broader topic of econometics and time series analysis in marketing. Time series models on marketing and performance metrics come in different forms, and we distinguish between 'traditional' time series models and the 'modern' time series models. Modeling Dynamic Relations Among Marketing and Performance Metrics first details the analysis steps, interpretation and marketing insights from traditional time series models. Starting with the univariate treatment of each separate marketing time series in evolution/stationarity tests and ARIMA models. Next, the author considers the over-time relation of multivariate time series in transfer functions and intervention analysis. The monograph then turns to multi-equation models, which are the core workhorses of modern dynamic econometric and time series models of the dynamic relations among marketing and performance metrics. The concluding section discusses policy analysis based on modern time series models and connect them to other time series developments.