Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Swarm intelligence algorithms are taking the spotlight in the field of function optimization. In this book our attention centers on a new framework inspired from the food foraging behavior of honey bees. Utilizing the Particle Swarm Optimization (PSO) algorithm within this framework we have developed a novel algorithm called Honey Bee Foraging Particle Swarm Optimization (HBF-PSO). The HBF-PSO algorithm and its variants are suitable for solving multimodal and dynamic optimization problems. We focus on the niching and speciation capabilities of these algorithms which allow them to locate and track multiple peaks in multimodal and dynamic environments. The HBF-PSO algorithm performs a collective foraging for fitness in promising neighborhoods in combination with individual scouting searches in other areas. The strength of the algorithm lies in its continuous monitoring of the whole scouting and foraging process with dynamic relocation of the bees (solution/particles) if more promising regions are found. Those looking for a novel approach to function optimization utilizing the food foraging behavior of honey bees can benefit from the information presented in this book.