Originally developed for mechanical and aeronautical engineering, structural optimization is not so easily applied to civil and architectural engineering, as structures in these fields are not mass products, but more often unique structures planned in accordance with specific design requirements. The shape and geometry of such structures are determined by a designer or an architect in view of nonstructural performance that includes aesthetics. Until now, books in this area gave little help to engineers working in cooperation with designers, as they covered conceptual material with little consideration of civil engineering applications, or they required a solid background in applied mathematics and continuum mechanics, an area not usually studied by practicing engineers and students in civil engineering.
Optimization of Finite Dimensional Structures introduces methodologies and applications that are closely related to design problems encountered in structural optimization, to serve as a bridge between the communities of structural optimization in mechanical engineering and the researchers and engineers in civil engineering. This unparalleled, self-contained work:
Mathematical preliminaries and methodologies are summarized in the book's appendix, so that readers can attend to the details when needed without having to wade through tedious mathematics in the explanatory main chapters. Instead, small examples that can be solved by hand or by using a simple program are presented in these chapters, making the book readily accessible and highly useful for both classroom use and professional self-study.