Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Option Prices as Probabilities

A New Look at Generalized Black-Scholes Formulae

Christophe Profeta, Bernard Roynette, Marc Yor
Livre broché | Anglais | Springer Finance | Springer Finance Lecture Notes
52,95 €
+ 105 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Discovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B, t? 0; F, t? 0, P) - t t note a standard Brownian motion with B = 0, (F, t? 0) being its natural ?ltra- 0 t t tion. Let E: = exp B?, t? 0 denote the exponential martingale associated t t 2 to (B, t? 0). This martingale, also called geometric Brownian motion, is a model t to describe the evolution of prices of a risky asset. Let, for every K? 0: + ? (t): =E (K?E ) (0.1) K t and + C (t): =E (E?K) (0.2) K t denote respectively the price of a European put, resp. of a European call, associated with this martingale. Let N be the cumulative distribution function of a reduced Gaussian variable: x 2 y 1 ? 2 ? N (x): = e dy. (0.3) 2? The celebrated Black-Scholes formula gives an explicit expression of? (t) and K C (t) in terms ofN: K ? ? log(K) t log(K) t ? (t)= KN ? + ?N ? ? (0.4) K t 2 t 2 and ? ?

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
270
Langue:
Anglais
Collection :

Caractéristiques

EAN:
9783642103940
Date de parution :
12-02-10
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
152 mm x 229 mm
Poids :
408 g

Les avis