Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
This work aims to provide new introduction to the particle swarm optimization methods using a formal analogy with physical systems. By postulating that the swarm motion behaves similar to both classical and quantum particles, we establish a direct connection between what are usually assumed to be separate fields of study, optimization and physics. Within this framework, it becomes quite natural to derive the recently introduced quantum PSO algorithm from the Hamiltonian or the Lagrangian of the dynamical system. The physical theory of the PSO is used to suggest some improvements in the algorithm itself, like temperature acceleration techniques and the periodic boundary condition. At the end, we provide a panorama of applications demonstrating the power of the PSO, classical and quantum, in handling difficult engineering problems. The goal of this work is to provide a general multi-disciplinary view on various topics in physics, mathematics, and engineering by illustrating their interdependence within the unified framework of the swarm dynamics. Table of Contents: Introduction / The Classical Particle Swarm Optimization Method / Boundary Conditions for the PSO Method / The Quantum Particle Swarm Optimization / Bibliography /Index