Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
This work tries to provide an elementary introduction to the notions of continuum limit and universality in statistical systems with a large number of degrees of freedom. The existence of a continuum limit requires the appearance of correlations at large distance, a situation that is encountered in second order phase transitions, near the critical temperature. In this context, we will emphasize the role of gaussian distributions and their relations with the mean field approximation and Landau's theory of critical phenomena. We will show that quasi-gaussian or mean-field approximations cannot describe correctly phase transitions in three space dimensions. We will assign this difficulty to the coupling of very different physical length scales, even though the systems we will consider have only local, that is, short range interactions. To analyze the unusual situation, a new concept is required: the renormalization group, whose fixed points allow understanding the universality of physical properties at large distance, beyond mean-field theory. In the continuum limit, critical phenomena can be described by quantum field theories. In this framework, the renormalization group is directly related to the renormalization process, that is, the necessity to cancel the infinities that arise in straightforward formulations of the theory. We thus discuss the renormalization group in the context of various relevant field theories. This leads to proofs of universality and to efficient tools for calculating universal quantities in a perturbative framework. Finally, we construct a general functional renormalization group, which can be used when perturbative methods are inadequate.