Radio Frequency and Microwave Power Amplifiers are finding an increasingly broad range of applications, particularly in communications and broadcasting, but also in the industrial, medical, automotive, aviation, military, and sensing fields. Each application has its own design specifications, for example, high linearity in modern communication systems or high efficiency in broadcasting, and, depending on process technology, capability to operate efficiently at very high frequencies, such as 77 GHz and higher for automotive radars. Advances in design methodologies have practical applications in improving gain, power output, bandwidth, power efficiency, linearity, input and output impedance matching, and heat dissipation.
This essential reference presented in two volumes aims to provide comprehensive, state-of-the-art coverage of RF and microwave power amplifier design with in-depth descriptions of current and potential future approaches. Volume 1 covers principles, device modeling and matching networks, while volume 2 focuses specifically on efficiency and linearity enhancement techniques. The volumes will be of particular interest to engineers and researchers engaged in RF and microwave amplifier design, and those who are interested in systems incorporating RF and microwave amplifiers.